Galectin-3 Possesses Anti-Necroptotic and Anti-Apoptotic Effects in Cisplatin-Induced Acute Tubular Necrosis

Author:

Abstract

BACKGROUND/AIMS: Acute kidney injury (AKI) is a public health burden with increasing morbidity, mortality and health care cost. It is associated with increased risk for the development of chronic kidney disease and death. Acute tubular necrosis (ATN) is the most common cause of AKI. Apoptosis and tissue necrosis play an important role in ATN. Galectin 3 (GAL-3), a beta galactoside binding lectin, is known to have a role in inflammation, apoptosis and oxidative stress but its role in cisplatin induced acute tubular necrosis is not clearly elucidated. METHODS: Male C57B6-J and C57BL-6 -GAL-3 knock-out mice were used to induce ATN using cisplatin mouse model of acute tubular necrosis. GAL-3 expression, apoptotic, necrotic and necroptotic proteins in kidneys were measured using standard histologic, immunohistochemical, and enzyme-linked immunosorbent assay techniques. Data were presented as mean ± S.E. Statistically significant differences (p<0.05) was calculated between experimental groups and corresponding control groups by one-way analysis of variance. RESULTS: There was a significant increase in GAL-3 in kidneys of cisplatin treated GAL-3 wild mice when compared with its control mice. In addition, there were significant higher percentage of ATN, higher levels of plasma urea and creatinine, and higher levels of cathepsin B and cathepsin D, in kidneys of cisplatin-treated GAL-3 KO mice than cisplatin-treated GAL-3 wild mice. Likewise, there were significant higher levels of necroptosis proteins RIPK1, RIPK3, and MLKL in kidneys of cisplatin-treated GAL-3 KO mice than cisplatin-treated GAL-3 wild mice. Moreover, there were significant higher levels of kidney pro-apoptotic proteins; cleaved caspase-3, cleaved PARP, TRAIL and FAS in cisplatin treated GAL-3 KO mice when compared with cisplatin treated GAL-3 wild mice. CONCLUSION: GAL-3 can affect cell survival and death through its interaction with necroptotic, apoptotic and pro-survival proteins in renal tubules during cisplatin-induced acute tubular necrosis.

Publisher

Cell Physiol Biochem Press GmbH and Co KG

Subject

Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3