Targeting Kca3.1 Channels in Cancer

Author:

Abstract

The Kca3.1 channels, previously designated as IK1 or SK4 channels and encoded by the KCNN4 gene, are activated by a rise of the intracellular Ca2+ concentration. These K+ channels are widely expressed in many organs and involved in many pathologies. In particular, Kca3.1 channels have been studied intensively in the context of cancer. They are not only a marker and a valid prognostic tool for cancer patients, but have an important share in driving cancer progression. Their function is required for many characteristic features of the aggressive cancer cell behavior such as migration, invasion and metastasis as well as proliferation and therapy resistance. In the context of cancer, another property of Kca3.1 is now emerging. These channels can be a target for novel small molecule-based imaging probes, as it has been validated in case of fluorescently labeled senicapoc-derivatives. The aim of this review is (i) to give an overview on the role of Kca3.1 channels in cancer progression and in shaping the cancer microenvironment, (ii) discuss the potential of using Kca3.1 targeting drugs for cancer imaging, (iii) and highlight the possibility of combining molecular dynamics simulations to image inhibitor binding to Kca3.1 channels in order to provide a deeper understanding of Kca3.1 channel pharmacology. Alltogether, Kca3.1 is an attractive therapeutic target so that senicapoc, originally developed for the treatment of sickle cell anemia, should be repurposed for the treatment of cancer patients.

Publisher

Cell Physiol Biochem Press GmbH and Co KG

Subject

Physiology

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3