Do the Effects of Krebs Cycle Intermediates on Oxygen-Dependent Processes in Hypoxia Mediated by the Nitric Oxide System Have Reciprocal or Competitive Relationships?

Author:

Abstract

Background/Aims: Currently, it is proven that the cellular metabolism of nitric oxide is necessary to maintain optimal health and adaptation of the organism to the impact of various environmental factors. The aim of this work was to reveal the biological role of nitric oxide, its metabolic changes, and its mechanism of action in tissues under hypoxia, as well as the possibility of tissue metabolism correction through NO-dependent systems under the influence of Krebs cycle intermediates. Materials: A systematic assessment of the effect of succinate (SC, 50 mg/kg b.w.) and α-ketoglutarate (KGL, 50 mg/kg b.w.) in the regulation of oxygen-dependent processes in rats (mitochondrial oxidative phosphorylation, microsomal oxidation, intensity of lipid peroxidation processes, and the state of the antioxidant defense system) depending on functional changes in nitric oxide production during hypoxia was evaluated. The state of the nitric oxide system was estimated spectrophotometrically by determination of the concentration of its stable nitrite anion metabolite (NO2–). The levels of catecholamines were estimated from the content of epinephrine and norepinephrine using the differentially fluorescent method. The activity of cytochrome P450-dependent aminopyrine-N-demethylase was determined with the Nash reagent. Results: Tissue hypoxia and metabolic disorders caused by this condition through changes in the content of catecholamines (epinephrine, norepinephrine, dopamine, DOPA) as well as the cholinesterase-related system (acetylcholine content and acetylcholinesterase activity) were the studied experimental parameters under acute hypoxia (AH, 7% O2 in N2, 30 min). The activation of lipid peroxidation and oxidatively modified proteins and an increase in the epinephrine content in AH are associated with an increased role of SC and a decrease in KGL as substrates of oxidation in mitochondria. A more pronounced effect of exogenous KGL, compared to SC, on the content of nitrite anion as a stable metabolite of nitric oxide in the liver under acute hypoxia against the background of a decrease in the intensity of lipid peroxidation processes was revealed. The activation of SC-dependent mitochondrial oxidative processes caused by AH was found to decrease in animals after an intermittent hypoxia training (IHT) course. IHT (7% O2 in N2, 15-min, 5 times daily, 14 days) prevented the activation of oxidative stress in tissues and blood after the AH impact and increased the efficiency of energy-related reactions in the functioning of hepatic mitochondria through increased oxidation of KGL. Conclusion: The studied effects of adaptation are mediated by an increase in the role of NO-dependent mechanisms, as assessed by changes in the pool of nitrates, nitrites, carbamides, and total polyamines.

Publisher

Cell Physiol Biochem Press GmbH and Co KG

Subject

Physiology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3