Dual Modification of Tau by Pseudophosphorylation and Glycation Does Not Enhance Amorphous Aggregation

Author:

,Chinnathambi Subashchandrabose

Abstract

Background/Aims: The neurofibrillary tangles consisting of Tau protein are an important pathology in Alzheimer’s disease. The paired helical filaments of Tau form most of the NFTs. These PHFs of Tau are found to carry numerous post-translational modifications, which stabilize them and aid in aggregation. The mechanistic function of Tau is to bind and stabilize the axonal microtubules. Hyperphosphorylation of Tau causes it to compromise its physiological function and accumulate in the neurons in the form of aggregates. Such residue-specific phosphorylation has been studied by employing Tau pseudophosphorylation mutants. But in addition to phosphorylation, several other modifications also aid in stabilizing the Tau PHF. Glycation is one such non-enzymatic PTM caused by sugars and their reactive intermediates. In this study, we employed the pseudophosphorylated Tau double mutants (262/404D, 262/396D, and 231/262) for studying their modification by methyl glyoxal, a reactive intermediate of glucose metabolism. Methods: We studied various biophysical properties like aggregation propensity, Advanced glycation end-product formation, and global conformation of the Tau with dual modifications. Our study includes the use of in vitro techniques e.g., ThS fluorescence assay, electron microscopy, CD spectroscopy, SDS-PAGE. Results: The overall result of the study suggest that the MG-induced Tau aggregation is influenced by the residue-specific Tau phosphorylation. Conclusion: In conclusion, the combinatorial effect of discreet PTMs on Tau function could lead to a better understanding of Tauopathy.

Publisher

Cell Physiol Biochem Press GmbH and Co KG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3