Cytotoxic Effects Caused by Functionalized Carbon Nanotube in Murine Macrophages.

Author:

Abstract

BACKGROUND/AIMS: The development of new nanomaterials has been growing in recent decades to bring benefits in several areas, especially carbon-based nanoparticles, which have unique physical-chemical properties and allow to take on several applications. Consequently, the use of new nanomaterials without previous toxicological studies raises concern about possible harmful health effects. The aim of this study was to investigate the cytotoxic profile of a new multi-walled carbon nanotube (MWCNT) functionalized with tetraethylenepentamine called OCNT-TEPA using in vitro assays in murine macrophage cells linage J774 A.1. METHODS: OCNT-TEPA was characterized by transmission electron microscopy (TEM) and high resolution TEM (HR-TEM), scanning electron microscopy (SEM), zeta potential and dynamic light scattering (DLS), and its cytotoxic effects were evaluated at 24 and 48 hours by cell viability assays (MTT and NR), morphology and cell recovery (optic microscopy and clonogenic assay), formation of reactive oxygen (ROS) and nitric oxide (NO) species, inflammatory profile (IL-6 and TNF cytokines), mitochondrial membrane potential analysis (MMP), activation of the caspase 3 pathway and cell death (flow cytometry). RESULTS: The data showed a significant decrease in cell viability, increased production of ROS and NO, alteration of mitochondrial membrane potential, increased levels of inflammatory cytokines, alteration of cell morphology, activation of the Caspase 3 pathway and consequently cell death, in the highest concentrations of OCNT-TEPA tested in the periods of 24 and 48 hours. CONCLUSION: The analyses showed that OCNT-TEPA has a dose-dependent cytotoxic profile, which may be harmful to murine macrophages (J774 A.1) and may represent a health risk.

Publisher

Cell Physiol Biochem Press GmbH and Co KG

Subject

Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3