Affiliation:
1. Ontario Forest Research Institute, 1235 Queen St. E., Sault Ste. Marie, Ontario P6A 2E5.
Abstract
The relationship of stand structural features with understory light levels, estimated by gap light index (GLI), was investigated in 22 second-growth eastern white (Pinus strobus L.) and red pine (Pinus resinosa Ait.)-dominated stands in central Ontario that encompassed a broad range in density and basal area. Simple, empirical light models were developed to quantify the influence of several stand structural variables on canopy transmittance as estimated by GLI. Models were also derived to facilitate the operational identification of residual basal area, density, and percent canopy closure associated with target understory light levels that optimize the growth of white pine regeneration and its protection from weevil and blister rust when using the uniform shelterwood silvicultural system. Regression models indicated significant negative, nonlinear relationships of GLI with density, basal area, a stand density index, total crown area, and foliar biomass, while GLI was linearly related to percent canopy closure. Application of these models to identify density, basal area, and canopy closure values associated with target light levels for the regeneration and removal cuts of uniform shelterwoods demonstrates the use of this information to help guide management of white pine–red pine forests.
Publisher
Canadian Institute of Forestry
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献