Moisture and energy content of fire-burnt trees for bioenergy production: A case study of four tree species from northwestern Ontario

Author:

Hosegood Steven,Leitch Mathew,Shahi Chander,Pulkki Reino

Abstract

With the current energy reform, the Ontario government has taken an initiative to phase out coal-fired generatingstations by 2014, and replace coal with biomass as feedstock at the Atikokan Generating Station. This switch to greenenergy production has opened a new avenue of income for mills and biomass-harvesting companies. However, as theneed for biomass increases, harvesting residues may no longer satisfy the needs of cogeneration facilities and new sourcesmay be sought. A potential source of woody biomass in Ontario is from forest fires. On average, an area of 35 460 ha or3 868 034 m3 of wood is devastated by wildfire every year in the Area of the Undertaking in Ontario and has the potentialto be salvaged. However, the fuel quality and feasibility of salvaging wildfire-burnt areas for bioenergy production innorthern Ontario has not been investigated so far. In this study, five different-aged fires in the MNR Thunder Bay District—12, 18, 24, 37, and 52 months old—were sampled for moisture content and calorific value of the wood. This samplingwas done across four of the most prolific tree species grown in northwestern Ontario—white birch, trembling aspen,balsam fir, and black spruce. The average moisture content (dry weight basis) of the five fires ranged from 27.1% to 34.9%and the average calorific value from 19.0 MJ/kg to 21.1 MJ/kg. Significant differences in moisture content were foundbetween the species and the ages of fire. Hardwood species had significantly higher moisture content compared to softwoods.The results display that wildfire-burnt areas have the potential to supply good-quality fuel for bioenergy productionin northwestern Ontario. Key words: biomass, wildfire-burnt areas, bioenergy production, moisture content, calorific value, northern Ontario

Publisher

Canadian Institute of Forestry

Subject

Forestry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3