Author:
Béland Martin,Bergeron Yves
Abstract
Natural regeneration in jack pine (Pinus banksiana Lamb.) stands in Quebec is only sufficient 4% of the time and up to only 33% of the time in mixed stands. This study evaluates the usefulness of forest ecological types as defined by the Quebec Ministry of Forests in predicting abundance of advanced growth in pure and mixed jack pine stands of the Abitibi region, in north-western Quebec. Trees above 1.3 m in height and up to 5 cm DBH were tallied in 102 quadrats of 20 × 20 metres to evaluate advanced growth densities. No significant difference in advanced growth densities was observed between the two main types of surficial geological deposit in the region, lacustrine clays and glacial tills. Only shallow till and organic deposits over bedrock and fluvio-glacial sands showed significantly higher advanced growth densities. Prediction can be improved by using ecological variables such as soil texture, moisture regime, distance from a seed source and stand composition. Abundance of black spruce (Picea mariana (Mill.) B.S.P.) regeneration is positively associated with the proportion of sand in the soil profile and with drier sites; advanced growth of balsam fir (Abies balsamea (L.) Mill.) and white spruce (Picea glauca (Moench) Voss.) is weakly associated with the distance to a fire-preserved zone containing seed trees. Abundance of pin cherry (Prunus pensylvanica L.f.), probably associated with canopy openings, is positively linked with abundance of balsam fir and white spruce advanced growth. Jack pine regeneration by means of advanced growth occurs almost exclusively in jack pine stands on sand; higher proportions of hardwoods in the overstory appear to be negatively linked to jack pine advanced growth. Although the site variables studied showed some significant relationships with advanced growth abundance (maximum R2 = 0.32) which were slightly improved with stand composition variables (maximum R2 = 0.38), no satisfactory predictive model could be implemented. Key words: jack pine, advanced growth, ecological classification
Publisher
Canadian Institute of Forestry
Cited by
17 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献