Geographic information systems as a part of epidemiological surveillance for COVID-19 in urban areas

Author:

Blokh A. I.1ORCID,Penyevskaya N. A.1ORCID,Rudakov N. V.1ORCID,Mikhaylova O. A.2ORCID,Fedorov A. S.2ORCID,Sannikov A. V.3ORCID,Nikitin S. V.2ORCID

Affiliation:

1. Omsk Research Institute of Natural Focal Infections; Omsk State Medical University

2. Center for Hygiene and Epidemiology in the Omsk Region

3. Omsk State Medical University

Abstract

Aim. To identify clustering areas of COVID-19 cases during the first 3 months of pandemic in a million city.Materials and Methods. We collected the data on polymerase chain reaction verified cases of novel coronavirus infection (COVID-19) in Omsk for the period from April, 15 until July 1, 2020. We have drawn heat maps using Epanechnikov kernel and calculated Getis-Ord general G statistic (Gi*). Analysis of geographic information was carried out in QGIS 3.14 Pi (qgis.org) software using the Visualist plugin.Results. Having inspected spatial distribution of COVID-19 cases, we identified certain clustering areas. The spread of COVID-19 involved Sovietskiy, Central and Kirovskiy districts, and also Leninskiy and Oktyabrskiy districts a short time later. We found uneven spatiotemporal distribution of COVID-19 cases infection across Omsk, as 13 separate clusters were documented in all administrative districts of the city.Conclusions. Rapid assessment of spatial distribution of the infection employing geographic information systems enables design of kernel density maps and harbors a considerable potential for real-time planning of preventive measures. 

Publisher

Kemerovo State Medical University

Reference11 articles.

1. Kutyrev VV, Popova AYu, Smolensky VYu, Ezhlova EB, Demina YuV, Safronov VA, Karnaukhov IG, Ivanova AV, Shcherbakova SA. Epidemiological Features of New Coronavirus Infection (COVID-19). Communication 1: Modes of Implementation of Preventive and Anti-Epidemic Measures. Problems of Particularly Dangerous Infections. 2020;(1):6-13. (In Russ.).https://doi.org/10.21055/0370-1069-2020-1- 6-13

2. World Health Organization (WHO). Coronavirus disease (COVID-19) Situation Report – 163. Available at: https://www.who.int/docs/defaultsource/coronaviruse/situation-reports/20200701-covid-19-sitrep-163.pdf?sfvrsn=c202f05b_2. Accessed: 27 April, 2021.

3. Li X, Zhou L, Jia T, Peng R, Fu X, Zou Y. Associating COVID-19 Severity with Urban Factors: A Case Study of Wuhan. Int. J. Environ. Res. Public Health. 2020; 7(18):6712. https://doi.org/10.3390/ijerph17186712

4. Omsk – gorod budushhego! (In Russ.). Available at: https://admomsk.ru/web/guest/city. Accessed January 1, 2021.

5. Rossy Q. Visualist: a spatial analysis plugin for crime analysts. Ecole des sciences criminelles, Lausanne. – 2019. – Available at: https://plugins.qgis.org/plugins/visualist/ Accessed: 27 April, 2021.

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3