Affiliation:
1. Omsk Research Institute of Natural Focal Infections;
Omsk State Medical University
2. Center for Hygiene and Epidemiology in the Omsk Region
3. Omsk State Medical University
Abstract
Aim. To identify clustering areas of COVID-19 cases during the first 3 months of pandemic in a million city.Materials and Methods. We collected the data on polymerase chain reaction verified cases of novel coronavirus infection (COVID-19) in Omsk for the period from April, 15 until July 1, 2020. We have drawn heat maps using Epanechnikov kernel and calculated Getis-Ord general G statistic (Gi*). Analysis of geographic information was carried out in QGIS 3.14 Pi (qgis.org) software using the Visualist plugin.Results. Having inspected spatial distribution of COVID-19 cases, we identified certain clustering areas. The spread of COVID-19 involved Sovietskiy, Central and Kirovskiy districts, and also Leninskiy and Oktyabrskiy districts a short time later. We found uneven spatiotemporal distribution of COVID-19 cases infection across Omsk, as 13 separate clusters were documented in all administrative districts of the city.Conclusions. Rapid assessment of spatial distribution of the infection employing geographic information systems enables design of kernel density maps and harbors a considerable potential for real-time planning of preventive measures.
Publisher
Kemerovo State Medical University
Reference11 articles.
1. Kutyrev VV, Popova AYu, Smolensky VYu, Ezhlova EB, Demina YuV, Safronov VA, Karnaukhov IG, Ivanova AV, Shcherbakova SA. Epidemiological Features of New Coronavirus Infection (COVID-19). Communication 1: Modes of Implementation of Preventive and Anti-Epidemic Measures. Problems of Particularly Dangerous Infections. 2020;(1):6-13. (In Russ.).https://doi.org/10.21055/0370-1069-2020-1- 6-13
2. World Health Organization (WHO). Coronavirus disease (COVID-19) Situation Report – 163. Available at: https://www.who.int/docs/defaultsource/coronaviruse/situation-reports/20200701-covid-19-sitrep-163.pdf?sfvrsn=c202f05b_2. Accessed: 27 April, 2021.
3. Li X, Zhou L, Jia T, Peng R, Fu X, Zou Y. Associating COVID-19 Severity with Urban Factors: A Case Study of Wuhan. Int. J. Environ. Res. Public Health. 2020; 7(18):6712. https://doi.org/10.3390/ijerph17186712
4. Omsk – gorod budushhego! (In Russ.). Available at: https://admomsk.ru/web/guest/city. Accessed January 1, 2021.
5. Rossy Q. Visualist: a spatial analysis plugin for crime analysts. Ecole des sciences criminelles, Lausanne. – 2019. – Available at: https://plugins.qgis.org/plugins/visualist/ Accessed: 27 April, 2021.
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献