INVESTIGATION ON BEHAVIOR OF STEEL CABLES SUBJECT TO LOCALIZED FIRE IN LARGE-SPACE BUILDINGS

Author:

Abstract

Pre-tensioned steel cable is a crucial load-bearing component of steel structure, the fire behavior of which affects the overall performance of the structure. However, it presently lacks research and fire safety design method to consider steel cable members subject to localized large-space building fire. In this paper, the mechanical behavior of normal steel strand cable and full-locked steel cable under large-space building fire is investigated, to provide guidance for the fire safety design of steel cable. Firstly, the numerical model of temperature field of steel cables subject to large-space building fire was established and verified with the test results. Secondly, based on the verified temperature field model, the sequential thermal-mechanical coupling numerical model was established to study the fire behavior of steel cable, including temperature field, temperature gradient, failure mechanism, internal force and contact stress. Thirdly, the numerical method was adopted for the parametric analysis on the fire resistance of steel cables, considering the effect of temperature-field model, non-uniform fire, load ratio and span of steel cable. The following conclusions are obtained: 1) The average temperature can be taken to simplify the transverse temperature field due to the small amplitude of transverse temperature gradient of steel cable section; 2) Because of the size effect of steel wire, the overall temperature of normal steel strand cable is higher than that of full-locked steel cable under the same conditions of same nominal diameter and fire conditions, and the damage occurs earlier than that of full-locked steel cable under fire.

Publisher

The Hong Kong Institute of Steel Construction

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3