Abstract
The application of stainless-clad (SC) bimetallic steel in various conditions such as offshore and marine environment requires members designed in different cross-sectional shapes, which consist of both internal and outstand elements. To form a comprehensive understanding of buckling behaviour of the SC bimetallic steel members, the behaviour of outstand compression plates needs to be investigated. In this study, the theoretical elastic buckling stress of outstand SC bimetallic steel plates subjected to uniformly distributed uniaxial compression is derived. Considering the position of neutral surface, the energy method and Ritz formulation are used to solve the buckling stress. Adaptation of the first-order shear deformation plate theory (FSDT) is used to modify the solution, which is further compared with finite element analyses. The influence of different parameters such as cladding configuration, clad ratio, elastic modulus ratio, aspect ratio and width-to-thickness ratio on the elastic buckling behaviour of the SC bimetallic plates is analysed. The simplified design formulae and design requirements are summarized to form a comprehensive design method.
Publisher
The Hong Kong Institute of Steel Construction