REMARKS ON MULTIVARIATE EXTENSIONS OF POLYNOMIAL BASED SECRET SHARING SCHEMES

Author:

DERBISZ Jakub1

Affiliation:

1. Polska Akademia Nauk w Warszawie

Abstract

We introduce methods that use Grobner bases for secure secret sharing schemes. The description is based on polynomials in the ring R = K[X1, . . . , Xl] where identities of the participants and shares of the secret are or are related to ideals in R. Main theoretical results are related to algorithmical reconstruction of a multivariate polynomial from such shares with respect to given access structure, as a generalisation of classical threshold schemes. We apply constructive Chinese remainder theorem in R of Becker and Weispfenning. Introduced ideas find their detailed exposition in our related works

Publisher

Wojskowa Akademia Techniczna w Warszawie

Reference21 articles.

1. C. Asmuth, J. Bloom, A modular approach to key safeguarding, IEEE Trans. on Information Theory, IT-29(2):208-211, 1983.

2. T. Becker, V. Weispfenning, The Chinese remainder problem, multivariate interpolation, and Gr¨obner bases, Proc. ISSAC’91, Bonn, ACM Press, 6469, New York 1991.

3. T. Becker, V. Weispfenning, Gr¨obner Bases: A Computational Approach to Commutative Algebra, Springer-Verlag, 1993.

4. M. Ben-Or, S. Goldwasser, A. Wigderson, Completeness theorems for non-cryptographic fault-tolerant distributed computation, 1-10, Proc. ACM STOC ’88.

5. G. Blakley, Safeguarding cryptographic keys, Proceedings of the National Computer Conference 48: 313–317, 1979.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3