A proposal to use reinforcement learning to optimize decision-making in the field of counteracting money laundering and terrorist financing (Part 2)

Author:

Kędzierski Maciej Aleksander1ORCID

Affiliation:

1. Radca prawny, OIRP Warszawa

Abstract

Uczenie przez wzmacnianie skupia się nie tylko na uczeniu pojedynczego agenta, lecz także zastosowanie tej metody znajduje swoje odzwierciedlenie w wieloagentowym działaniu. To kwestia istotna z punktu widzenia tego, że proces decyzyjny i zarządzanie informacją w systemie AML/CFT dla instytucji obowiązanej pozostaje coraz bardziej procesem skomplikowanym. W konsekwencji należy wprowadzić także, chcąc zastosować metodę uczenia przez wzmacnianie, wielość agentów zarówno w relacji ze środowiskiem, jak i w relacji ze sobą. Wobec tego rodzaju rozwiązań możliwe jest do zastosowania wieloagentowe uczenie się przez wzmacnianie czy koncepcja półniezależnej metody szkolenia polityk ze współdzieloną reprezentacją dla heterogenicznego, wieloagentowego uczenia się przez wzmacnianie. Ponadto mając na uwadze fakt, że proces decyzyjny AML/CFT czerpie jedynie pomocniczo rozwiązania ze sztucznej inteligencji, w tym systemie zarządzania niezbędny pozostaje także czynnik ludzki. Wobec tego rodzaju potrzeb jako wyjściowe rozwiązanie można wskazać Reinforcement Learning from Human Feedback, które zapewnia w uczeniu czynnik ludzki.

Publisher

Wojskowa Akademia Techniczna w Warszawie

Reference21 articles.

1. ABRAMSON, J., AHUJA, A., CARNEVALE, F., GEORGIEV, P., 2022. Improving Multimodal Interactive Agents with Reinforcement Learning from Human Feedback, https://arxiv.org/pdf/2211.11602.pdf (dostęp: 22.11.2023).

2. BARTUŚ, T., 2013. Zastosowanie inteligentnych agentów w administracji publicznej, Wydział Ekonomii Uniwersytet Ekonomiczny w Katowicach, Roczniki Kolegium Analiz Ekonomicznych, nr 29.

3. DHADUK, H., 2023. A Complete Guide to Fine Tuning Large Language Models. Simform – Product Engineering Company, https://www.simform.com/blog/completeguide-finetuning-llm/ (dostęp: 20.11.2023).

4. EASTNETS, 2023. Is open-source AI a good or bad thing for the finance sector?, https://www.eastnets.com/newsroom/is-open-source-ai-a-good-or-bad-thing-for-the-finance-sector (dostęp: 24.11.2023).

5. EGLI, A., 2023. ChatGPT, GPT-4, and Other Large Language Models: The Next Revolution for Clinical Microbiology?, Clinical Infectious Diseases, vol. 77, nr 9.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3