Abstract
The Nonnegative Inverse Eigenvalue Problem (NIEP) is the problem of determining necessary and sufficient conditions for a list of $n$ complex numbers to be the spectrum of an entry--wise nonnegative matrix of dimension $n$. This is a very difficult and long standing problem and has been solved only for $n\leq 4$. In this paper, the NIEP for a particular class of nonnegative matrices, namely Leslie matrices, is considered. Leslie matrices are nonnegative matrices, with a special zero--pattern, arising in the Leslie model, one of the best known and widely used models to describe the growth of populations. The lists of nonzero complex numbers that are subsets of the spectra of Leslie matrices are fully characterized. Moreover, the minimal dimension of a Leslie matrix having a given list of three numbers among its spectrum is provided. This result is partially extended to the case of lists of $n > 2$ real numbers.
Publisher
University of Wyoming Libraries
Subject
Algebra and Number Theory
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献