Asymptotic results on the condition number of FD matrices approximating semi-elliptic PDEs

Author:

Vassalos Paris

Abstract

This work studies the asymptotic behavior of the spectral condition number of the matrices $A_{nn}$ arising from the discretization of semi-elliptic partial differential equations of the form \bdm -\left( a(x,y)u_{xx}+b(x,y)u_{yy}\right)=f(x,y), \edm on the square $\Omega=(0,1)^2,$ with Dirichlet boundary conditions, where the smooth enough variable coefficients $a(x,y), b(x,y)$ are nonnegative functions on $\overline{\Omega}$ with zeros. In the case of coefficient functions with a single and common zero, it is discovered that apart from the minimum order of the zero also the direction that it occurs is of great importance for the characterization of the growth of the condition number of $A_{nn}$. On the contrary, when the coefficient functions have non intersecting zeros, it is proved that independently of the order their zeros, and their positions, the condition number of $A_{nn}$ behaves asymptotically exactly as in the case of strictly elliptic differential equations, i.e., it grows asymptotically as $n^2$. Finally, the more complicated case of coefficient functions having curves of roots is considered, and conjectures for future work are given. In conclusion, several experiments are presented that numerically confirm the developed theoretical analysis.

Publisher

University of Wyoming Libraries

Subject

Algebra and Number Theory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Preconditioners for fractional diffusion equations based on the spectral symbol;Numerical Linear Algebra with Applications;2022-04-03

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3