REGULARITY RADIUS: PROPERTIES, APPROXIMATION AND A NOT A PRIORI EXPONENTIAL ALGORITHM

Author:

Hartman David,Hladik Milan

Abstract

The radius of regularity, sometimes spelled as the radius of nonsingularity, is a measure providing the distance of a given matrix to the nearest singular one. Despite its possible application strength this measure is still far from being handled in an efficient way also due to findings of Poljak and Rohn providing proof that checking this property is NP-hard for a general matrix. There are basically two approaches to handle this situation. Firstly, approximation algorithms are applied and secondly, tighter bounds for radius of regularity are considered. Improvements of both approaches have been recently shown by Hartman and Hlad\'{i}k (doi:10.1007/978-3-319-31769-4\_9) utilizing relaxation of the radius computation to semidefinite programming. An estimation of the regularity radius using any of the above mentioned approaches is usually applied to general matrices considering none or just weak assumptions about the original matrix. Surprisingly less explored area is represented by utilization of properties of special classes of matrices as well as utilization of classical algorithms extended to be used to compute the considered radius. This work explores a process of regularity radius analysis and identifies useful properties enabling easier estimation of the corresponding radius values. At first, checking finiteness of this characteristic is shown to be a polynomial problem along with determining a sharp upper bound on the number of nonzero elements of the matrix to obtain infinite radius. Further, relationship between maximum (Chebyshev) norm and spectral norm is used to construct new bounds for the radius of regularity. Considering situations where the known bounds are not tight enough, a new method based on Jansson-Rohn algorithm for testing regularity of an interval matrix is presented which is not a priory exponential along with numerical experiments. For a situation where an input matrix has a special form, several corresponding results are provided such as exact formulas for several special classes of matrices, e.g., for totally positive and inverse non-negative, or approximation algorithms, e.g., rank-one radius matrices. For tridiagonal matrices, an algorithm by Bar-On, Codenotti and Leoncini is utilized to design a polynomial algorithm to compute the radius of regularity.

Publisher

University of Wyoming Libraries

Subject

Algebra and Number Theory

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3