Author:
Nagy Gergő,Szokol Patricia
Abstract
In this paper, the problem of describing the structure of transformations leaving norms of generalized weighted quasi-arithmetic means of invertible positive operators invariant is discussed. In a former result of the authors, this problem was solved for weighted quasi-arithmetic means, and here the corresponding result is generalized by establishing its solution under certain mild conditions. It is proved that in a quite general setting, generalized weighted quasi-arithmetic means on self-adjoint operators are not monotone in their variables which is an interesting property. Moreover, the relation of these means with the Kubo-Ando means is investigated and it is shown that the common members of the classes of these types of means are weighted arithmetic means.
Publisher
University of Wyoming Libraries
Subject
Algebra and Number Theory
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献