Author:
Koukouvinos Christos,Jbilou Khalide,Mitrouli Marilena,Turek Ondrej
Abstract
This work proposes a fast estimate for the generalized cross-validation function when the design matrix of an experiment has correlated columns. The eigenvalue structure of this matrix is used to derive probability bounds satisfied by an appropriate index of proximity, which provides a simple and accurate estimate for the numerator of the generalized cross-validation function. The denominator of the function is evaluated by an analytical formula. Several simulation tests performed in statistical models having correlated design matrix with intercept confirm the reliability of the proposed probabilistic bounds and indicate the applicability of the proposed estimate for these models.
Publisher
University of Wyoming Libraries
Subject
Algebra and Number Theory
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献