Sign Characteristics of Regular Hermitian Matrix Pencils under Generic Rank-1 and Rank-2 Perturbations

Author:

Batzke Leonhard

Abstract

The spectral behavior of regular Hermitian matrix pencils is examined under certain structure-preserving rank-1 and rank-2 perturbations. Since Hermitian pencils have signs attached to real (and infinite) blocks in canonical form, it is not only the Jordan structure but also this so-called sign characteristic that needs to be examined under perturbation. The observed effects are as follows: Under a rank-1 or rank-2 perturbation, generically the largest one or two, respectively, Jordan blocks at each eigenvalue lambda are destroyed, and if lambda is an eigenvalue of the perturbation, also one new block of size one is created at lambda. If lambda is real (or infinite), additionally all signs at lambda but one or two, respectively, that correspond to the destroyed blocks, are preserved under perturbation. Also, if the potential new block of size one is real, its sign is in most cases prescribed to be the sign that is attached to the eigenvalue lambda in the perturbation.

Publisher

University of Wyoming Libraries

Subject

Algebra and Number Theory

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Even grade generic skew-symmetric matrix polynomials with bounded rank;Linear Algebra and its Applications;2024-12

2. Bounded Rank Perturbations of Quasi-Regular Pencils Over Arbitrary Fields;SIAM Journal on Matrix Analysis and Applications;2023-12-05

3. Generic symmetric matrix pencils with bounded rank;Journal of Spectral Theory;2020-09-15

4. Rank One Perturbations of Matrix Pencils;SIAM Journal on Matrix Analysis and Applications;2020-01

5. Weierstrass Structure and Eigenvalue Placement of Regular Matrix Pencils under Low Rank Perturbations;SIAM Journal on Matrix Analysis and Applications;2019-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3