A new method to improve the efficiency and accuracy of incremental singular value decomposition

Author:

Jiang HansiORCID,Chaudhuri Arin

Abstract

Singular value decomposition (SVD) has been widely used in machine learning. It lies at the root of data analysis, and it provides the mathematical basis for many data mining techniques. Recently, interest in incremental SVD has been on the rise because it is well suited to streaming data. In this paper, we propose a new algorithm of incremental SVD that is designed to improve both efficiency and accuracy during computation. More specifically, our proposed algorithm takes advantage of the special structures of arrowhead and diagonal-plus-rank-one matrices involved in updating SVD models to expedite the updating process. Moreover, because the singular values are computed independently, the proposed method can be easily parallelized. In addition, as this paper shows, increasing rank can lead to more accurate singular values in the updating process. Experimental results from synthetic and real data sets demonstrate gains in efficiency and accuracy in the updating process.

Publisher

University of Wyoming Libraries

Subject

Algebra and Number Theory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3