Linearizations for Interpolatory Bases - a Comparison: New Families of Linearizations

Author:

Bueno Cachadina Maria IsabelORCID,Perez JavierORCID,Akshar Anthony,Mileeva DariaORCID,Kassem RemyORCID

Abstract

One strategy to solve a nonlinear eigenvalue problem $T(\lambda)x=0$ is to solve a polynomial eigenvalue problem (PEP) $P(\lambda)x=0$ that approximates the original problem through interpolation. Then, this PEP is usually solved by linearization. Because of the polynomial approximation techniques, in this context, $P(\lambda)$ is expressed in a non-monomial basis. The bases used with most frequency are the Chebyshev basis, the Newton basis and the Lagrange basis. Although, there exist already a number of linearizations available in the literature for matrix polynomials expressed in these bases, new families of linearizations are introduced because they present the following advantages: 1) they are easy to construct from the matrix coefficients of $P(\lambda)$ when this polynomial is expressed in any of those three bases; 2) their block-structure is given explicitly; 3) it is possible to provide equivalent formulations for all three bases which allows a natural framework for comparison. Also, recovery formulas of eigenvectors (when $P(\lambda)$ is regular) and recovery formulas of minimal bases and minimal indices (when $P(\lambda)$ is singular) are provided. The ultimate goal is to use these families to compare the numerical behavior of the linearizations associated to the same basis (to select the best one) and with the linearizations associated to the other two bases, to provide recommendations on what basis to use in each context. This comparison will appear in a subsequent paper.

Publisher

University of Wyoming Libraries

Subject

Algebra and Number Theory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Equivalences for Linearizations of Matrix Polynomials;Proceedings of the 2021 on International Symposium on Symbolic and Algebraic Computation;2021-07-18

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3