Abstract
The central mathematical problem studied in this work is the estimation of the quadratic form $x^TA^{-1}x$ for a given symmetric positive definite matrix $A \in \mathbb{R}^{n \times n}$ and vector $x \in \mathbb{R}^n$. Several methods to estimate $x^TA^{-1}x$ without computing the matrix inverse are proposed. The precision of the estimates is analyzed both analytically and numerically.
Publisher
University of Wyoming Libraries
Subject
Algebra and Number Theory
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献