INSIGHTS INTO THE EVOLUTION OF THE CHLOROPLAST GENOME AND THE PHYLOGENY OF BEGONIA

Author:

Tseng Yu-HsinORCID,Hsieh Chia-LunORCID,Campos-Domínguez LuciaORCID,Hu Ai-QunORCID,Chang Chiung-ChihORCID,Hsu Yu-TingORCID,Kidner Catherine AnneORCID,Hughes MarkORCID,Moonlight PeterORCID,Hung Cheng-Hsiang,Wang Yen-ChiaoORCID,Wang Yi-TseORCID,Liu Shih-HuiORCID,Girmansyah DedenORCID,Chung Kuo-FangORCID

Abstract

Begonia (Begoniaceae) is one of the largest angiosperm genera, comprising more than 2000 species; this makes it ideal as a model to investigate the genomic basis of species radiations. Here we present the results of the first genus-wide comparative study of plastid genome structure, sequence diversity, and phylogenetics of Begoniaceae, in which 44 complete Begoniaceae plastomes, including those of Begonia’s sister group, Hillebrandia, a monotypic genus endemic to Hawai‘i, and 43 species representing 42 sections of Begonia, were assembled. Our results reveal that Begoniaceae plastome size ranges from 167,123 to 170,852 bp, displaying the typical quadripartite structure. Structures of most Begoniaceae plastomes are highly conserved but differ from the plastomes of the majority of angiosperms in having a unique inverted repeat (IR) expansion, from IRa to large single copy (LSC), resulting from a duplicated fragment of the trnH–GUG gene to the trnR–UCU gene. Additionally, comparison between plastomes of Hillebrandia and Begonia shows that the former genus has fewer simple sequence repeats than most Begonia species analysed, suggesting that species of Begonia have more repetitive and dynamic plastomes than those of its sister genus. We also identified six highly variable regions suitable for phylogenetic analysis and as potential DNA barcodes for species identification. Our robust hypothesis of plastome phylogenomic relationships provides new insights into infrageneric classification and highlights potential classification issues in Begonia. 

Publisher

Royal Botanic Garden Edinburgh

Subject

Plant Science,Ecology, Evolution, Behavior and Systematics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3