Logan Medallist 8. Trace Elements in Iron Formation as a Window into Biogeochemical Evolution Accompanying the Oxygenation of Earth’s Atmosphere
Author:
Konhauser Kurt O.,Kappler Andreas,Lalonde Stefan V.,Robbins Leslie J.
Abstract
Iron formations exemplify a type of sedimentary rock found in numerous Archean and Proterozoic supracrustal successions. They serve as a valuable chemical record of Precambrian seawater chemistry and post-depositional iron cycling. These formations accumulated on the seafloor for over two billion years during the early history of our planet, offering a unique opportunity to study environmental changes that occurred during Earth's evolution. Among these changes, one of the most significant events was the shift from an anoxic planet to one where oxygen (O2) became consistently present in both the marine water column and atmosphere. This progression towards global oxygenation was closely linked to the emergence of aerobic microbial metabolisms, which profoundly impacted continental weathering processes, nutrient supply to the oceans, and ultimately, the diversification of the biosphere and complex life forms. In this review, we synthesize two decades of research into the temporal fluctuations of trace element concentrations in iron formations. Our aim is to shed light on the complex mechanisms that contributed to the oxygenation of Earth's surface environments.
Publisher
University of New Brunswick Libraries - UNB
Subject
General Earth and Planetary Sciences
Reference207 articles.
1. Albut, G., Babechuk, M.G., Kleinhanns, I.C., Benger, M., Beukes, N.J., Steinhilber, B., Smith, A.J.B., Kruger, S.J., and Schoenberg, R., 2018, Modern rather than Mesoarchaean oxidative weathering responsible for the heavy stable Cr isotopic signatures of the 2.95 Ga old Ijzermijn iron formation (South Africa): Geochimica et Cosmochimica Acta, v. 228, p. 157–189, https://doi.org/10.1016/j.gca.2018.02.034. 2. Albut, G., Kamber, B.S., Brüske, A., Beukes, N.J., Smith, A.J.B, and Schoenberg, R., 2019, Modern weathering in outcrop samples versus ancient paleoredox information in drill core samples from a Mesoarchaean marine oxygen oasis in Pongola Supergroup, South Africa: Geochimica et Cosmochimica Acta, v. 265, p. 330–353, https://doi.org/10.1016/j.gca.2019.09.001. 3. Alexander, B.W., Bau, M., Andersson, P., and Dulski, P., 2008, Continentally-derived solutes in shallow Archean seawater: Rare earth element and Nd isotope evidence in iron formation from the 2.9 Ga Pongola Supergroup, South Africa: Geochimica et Cosmochimica Acta, v. 72, p. 378–394, https://doi.org/10.1016/j.gca.2007.10.028. 4. Amend, J.P., McCollom, T.M., Hentscher, M., and Bach, W., 2011, Catabolic and anabolic energy for chemolithoautotrophs in deep-sea hydrothermal systems hosted in different rock types: Geochimica et Cosmochimica Acta, v. 75, p. 5736–5748, https://doi.org/10.1016/j.gca.2011.07.041. 5. Anbar, A.D., and Knoll, A.H., 2002, Proterozoic ocean chemistry and evolution: a bioinorganic bridge?: Science, v. 297, p. 1137–1142, https://doi.org/10.1016/j.gca.2011.07.041.
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|