Adsorption mechanism of dimeric Ga precursors in metalorganic chemical vapor deposition of gallium nitride

Author:

Kim Hankyu1ORCID,Kim Miso1ORCID,Kim Bumsang1ORCID,Shong Bonggeun1ORCID

Affiliation:

1. Department of Chemical Engineering, Hongik University , Wausan-ro 94, Mapo-gu, Seoul 04066, South Korea

Abstract

Gallium nitride (GaN) has attracted significant interest as a next-generation semiconductor material with various potential applications. During metalorganic chemical vapor deposition (MOCVD) of GaN using trimethyl gallium (TMG) and NH3, dimeric precursors are produced by gas-phase reactions such as adduct formation or thermal decomposition. In this work, the surface adsorption reactions of monomeric and dimeric Ga molecules including TMG, [(CH3)2Ga(NH2)]2, and [(CH3)GaNH]2 on the GaN surface are investigated using density functional theory calculations. It is found that [(CH3)2Ga(NH2)]2 is the most predominant form among the various dimeric precursors under typical GaN MOCVD process conditions. Our results indicate that the dimeric [(CH3)GaNH]2 precursor, which is generated through the thermal decomposition of [(CH3)2Ga(NH2)]2, would have higher reactivity on the GaN surface. Our work provides critical insights that can inform the optimization of GaN MOCVD processes, leading to advancements in GaN-based high-performance semiconductors.

Funder

National Research Foundation of Korea

Korea Institute for Advancement of Technology

Hongik University

Publisher

American Vacuum Society

Subject

Surfaces, Coatings and Films,Surfaces and Interfaces,Condensed Matter Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3