Planar microcoil arrays for in vitro cellular-level micromagnetic activation of neurons

Author:

Saha Renata1ORCID,Benally Onri J.1ORCID,Faramarzi Sadegh2ORCID,Bloom Robert1ORCID,Wu Kai1ORCID,Tonini Denis1ORCID,Shiao Maple3,Keirstead Susan A.45ORCID,Low Walter C.345ORCID,Netoff Theoden I.2ORCID,Wang Jian-Ping1ORCID

Affiliation:

1. Department of Electrical and Computer Engineering, University of Minnesota 1 , Minneapolis, Minnesota 55455

2. Department of Biomedical Engineering, University of Minnesota 2 , Minneapolis, Minnesota 55455

3. Department of Neurosurgery, University of Minnesota 3 , Minneapolis, Minnesota 55455

4. Stem Cell Institute, University of Minnesota 4 , Minneapolis, Minnesota 55455

5. Department of Integrative Biology and Physiology, University of Minnesota 5 , Minneapolis, Minnesota 55455

Abstract

In the treatment of neurodegenerative disorders, a potential cure at a single neuron cell resolution is still lacking. Micromagnetic neurostimulation, although in its infancy, is one of the most promising techniques that offer spatially selective activation of neurons through micrometer-sized coils or microcoils (μcoils). Time-varying current drives these μcoils and generates a time-varying magnetic field which in turn induces an electric field to activate the neural tissues. In this work, we report the design and fabrication of planar μcoil arrays, termed Magnetic Patch (MagPatch), for activating single neurons. Using numerical calculations on ANSYS-Maxwell and NEURON, we report an optimized MagPatch array design that exploits the directionality of the induced electric field from the μcoils to enhance spatial selectivity. Each μcoil has an outer dimension of 190 × 190 μm2 and one MagPatch array contains 8 μcoils. For proof-of-concept design and development, the MagPatch array has been fabricated on Si-substrates using Ti, Au, and Si3N4 to ensure preliminary biocompatibility. They were then encapsulated in Parylene-C, a waterproof, anti-leakage current coating, thereby ensuring basic surface biocompatibility. Human neuroblastoma cells were cultured directly on the surface encapsulated MagPatch, and calcium fluorescence imaging was used to assess cell functionality. The impact of scaling the dimensions of the μcoil in the MagPatch array on electrical characteristics, Q-factor, and thermal effects on neural tissues from these μcoils have also been discussed.

Funder

Minnesota Partnership for Biotechnology and Medical Genomics

College of Science and Engineering Fellowship, University of Minnesota

Minnesota's Discovery, Research and Innovation Economy

National Science Foundation

National Nano Coordinated Infrastructure Network

Robert Hartmann Endowed Chair Support

Publisher

American Vacuum Society

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Micromagnetic Neural Stimulation and Spintronic Neural Sensing;2024 IEEE International Magnetic Conference - Short papers (INTERMAG Short papers);2024-05-05

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3