Affiliation:
1. School of Materials and Chemistry, Southwest University of Science and Technology , Mianyang 621010, China
Abstract
The electrode is one of the key factors that influences and controls the resistive switching characteristic of a resistive switching device. In this work, we investigated the write-once-read-many-times (WORM)-resistive switching behavior of BiFeO3 (BFO)-based devices with different top electrodes, including Pt, Ag, Cu, and Al. The WORM-resistive switching behavior has been observed in Pt/BFO/LaNiO3 (LNO), Ag/BFO/LNO, and Cu/BFO/LNO devices. In the initial high resistance state, the Pt/BFO/LNO device shows space-charge-limited current conduction due to the large Schottky barrier height at the Pt/BFO interface, while the Ag/BFO/LNO and Cu/BFO/LNO devices exhibit Schottky emission conduction due to the small barrier height at both top electrode/BFO and BFO/LNO interfaces. In the low resistance state, the metallic conduction of the Pt/BFO/LNO device is a result of the formation of conduction filaments composed of oxygen vacancies, and yet the metallic conduction of Ag/BFO/LNO and Cu/BFO/LNO devices is due to the formation of oxygen vacancies-incorporated metal conduction filaments (Ag and Cu, respectively). The observed hysteresis I-V curve of the Al/BFO/LNO device may be attributed to oxygen vacancies and defects caused by the formation of Al–O bond near the Al/BFO interface. Our results indicate that controlling an electrode is a prominent and feasible way to modulate the performance of resistive switching devices.
Funder
Natural Science Foundation of Sichuan Province
Subject
Materials Chemistry,Electrical and Electronic Engineering,Surfaces, Coatings and Films,Process Chemistry and Technology,Instrumentation,Electronic, Optical and Magnetic Materials