Practical guide for in-house solid-state nanopore fabrication and characterization

Author:

Dominic Anumol1ORCID,Sajeer Parambath Muhammad1ORCID,Nasa Simran1ORCID,Varma Manoj1ORCID

Affiliation:

1. Center for Nanoscience and Engineering, Indian Institute of Science , Bangalore 560012, India

Abstract

Solid-state nanopores are considered a better alternative to biological nanopores for several sensing applications due to their better chemical, mechanical, and temperature stability. In addition to sequencing, nanopores currently also find applications in education, biomarker identification, quantification, single-molecule chemistry, and DNA computing. Nanopore technology’s simplicity and wide interdisciplinary applications have raised further interest among industry and scientific community worldwide. However, further development in solid-state nanopore technology and exploring its applications presents the need to have the capability to fabricate them in-house. This will be a more financially viable and flexible approach, especially in resource-limited situations. In order to do an in-house fabrication of solid-state nanopores, two key steps are involved. The first step is to fabricate suspended thin films, and the second one is the drilling of pores in these suspended thin membranes. Successful implementation of these two steps involves tedious optimization and characterization of the fabricated chips and nanopores. In this work, we describe the nanopore fabrication process in a ready-to-follow step-by-step guide and present solutions for several practical difficulties faced during the silicon nitride pore fabrication process. This work will help anyone new to this field and make the pore fabrication process more accessible.

Funder

Science Engineering Research Board

Publisher

American Vacuum Society

Subject

Materials Chemistry,Electrical and Electronic Engineering,Surfaces, Coatings and Films,Process Chemistry and Technology,Instrumentation,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3