On the origin and evolution of hotspots in multipatterning processes

Author:

Panneerchelvam Prem1ORCID,Huard Chad M.1ORCID,Graves Trey1,Pret Alessandro Vaglio1,Gronheid Roel2,Agarwal Ankur3,Smith Mark D.3

Affiliation:

1. KLA Corporation 1 , Austin, Texas 78759

2. KLA Corporation, Haasrode 2 , Leuven 3001, Belgium

3. KLA Corporation 3 , Milpitas, California 95035

Abstract

Understanding the origins and propagation of defects and hotspots in patterning processes used for semiconductor fabrication is of paramount importance in managing yield. In this paper, results from physics-based simulators to model lithography and dry etch processes are presented and compared to experimental results. These models are used to study different types of hotspots and defects observed in a litho-etch-litho-etch (LELE) multipatterning process. At each pass of the LELE flow, patterns are printed into a SiO2 collecting layer using a trilayer film stack comprised of a negative tone photoresist layer, a spin-on-glass layer (SOG), and a spin-on-carbon layer (SOC). After both passes of the LELE process, the patterns in the SiO2 collecting layer will be transferred to a TiN hardmask prior to final etch into an underlying dielectric. The SOG and SiO2 layers are etched using fluorocarbon plasma, while the SOC layer is etched with an H2/N2 plasma generated in a capacitively coupled plasma source. A pinching hotspot is observed during the single litho-etch pass in a region where two features are placed very close and the image contrast is low. However, for some lithography process conditions, this hotspot is rectified by subsequent etch steps and does not always transfer as a defect into the SiO2 layer. The quenching of the hotspot occurs primarily during the etching of the SOC layer due to the aspect ratio-dependent etching (ARDE) effect. A bridging hotspot is also observed at lithography during the single litho-etch pass at high exposure doses. This hotspot, on the other hand, is exacerbated by the etch steps because of the ARDE effect. Hotspots are also identified that originate from overlay errors between photomasks exposed during first and second passes of the LELE process. The etch bias generated during etching of the SOG layer is crucial to ensure that the overlay-related hotspot does not translate to the SiO2 layer. The extent of etch bias in the SOG etch step is critical and can be tuned by adjusting the neutral to ion flux ratio during that etch step. Increasing the flux ratio improves the process window for the overlay defect; however, when the ratio is higher than approximately 20% of the nominal value, a different defect type is formed in the SOG layer due to the inverse ARDE effect that propagates downstream to the SiO2 layer.

Publisher

American Vacuum Society

Subject

Materials Chemistry,Electrical and Electronic Engineering,Surfaces, Coatings and Films,Process Chemistry and Technology,Instrumentation,Electronic, Optical and Magnetic Materials

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Multi-step process optimization on high aspect ratio etching for memory devices;Advanced Etch Technology and Process Integration for Nanopatterning XIII;2024-04-09

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3