Review of actinide core-level photoemission

Author:

Thompson Alaina12ORCID,Limestall William13ORCID,Nelson Art4ORCID,Olive Daniel T.2ORCID,Terry Jeff15ORCID

Affiliation:

1. Department of Physics, Illinois Institute of Technology 1 , 3101 South Dearborn Street, Chicago, Illinois 60616

2. Materials Science and Technology Division, Los Alamos National Laboratory 2 , P.O. Box 1663, Los Alamos, New Mexico 87545

3. Chemical & Fuel Cycle Division, Argonne National Laboratory 3 , 9700 S. Cass Avenue, Lemont, Illinois 60439

4. Lawence Livermore National Laboratory 4 , 7000 East Avenue, Livermore, California 94551

5. Department of Mechanical, Materials, and Aerospace Engineering, Illinois Institute of Technology 5 , 3101 South Dearborn Street, Chicago, Illinois 60616

Abstract

Photoelectron spectroscopy allows for the investigation of the electronic structure and chemical bonding of actinide elements and their compounds, providing insights into oxidation states, chemical environments, and electronic configurations. This knowledge can aid in comprehending reactivity, stability, and other properties of actinide materials, which is essential for ensuring safe handling, storage, and disposal in nuclear applications. We have reviewed a number of results in actinide core-level photoemission studies, with a particular focus on x-ray photoemission spectroscopy (XPS) techniques. Actinides, due to their inherent radioactivity, have not been as well studied with XPS as have other segments of the periodic table. Given the inherent safety concerns, equipment requirements, and short isotopic lifetimes associated with actinide research, we outline the strategies and precautions necessary for conducting successful and safe XPS experiments on these elements. Core-level photoemission can be a powerful proven tool for investigating the electronic structure, chemical bonding behaviors, and physical properties of actinides, providing valuable insights into an incredibly complex behavior of these systems. We highlight key findings from recent studies that demonstrate the potential of core-level photoemission in uncovering the unique properties of actinides and their compounds. Finally, we identify current knowledge gaps and future research directions that could enhance our understanding of actinide chemistry and physics.

Funder

U.S. Department of Energy

U.S. Department of Education

Publisher

American Vacuum Society

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3