Strongly interacting trapped one-dimensional quantum gases: Exact solution

Author:

Minguzzi A.1ORCID,Vignolo P.2ORCID

Affiliation:

1. Univ. Grenoble-Alpes, CNRS, LPMMC, 38000 Grenoble, France

2. Univ. Côte d'Azur, CNRS, InPhyNi, 06560 Valbonne, France

Abstract

Understanding the effect of correlations in interacting many-body systems is one of the main challenges in quantum mechanics. While the general problem can only be addressed by approximate methods and numerical simulations, in some limiting cases, it is amenable to exact solutions. This Review collects the predictions coming from a family of exact solutions which allows us to obtain the many-body wavefunction of strongly correlated quantum fluids confined by a tight waveguide and subjected to any form of longitudinal confinement. It directly describes the experiments with trapped ultracold atoms where the strongly correlated regime in one dimension has been achieved. The exact solution applies to bosons, fermions, and mixtures. It allows us to obtain experimental observables such as the density profiles and momentum distribution at all momentum scales, beyond the Luttinger liquid approach. It also predicts the exact quantum dynamics at all the times, including the small oscillation regime yielding the collective modes of the system and the large quench regime where the system parameters are changed considerably. The solution can be extended to describe finite-temperature conditions, spin, and magnetization effects. The Review illustrates the idea of the solution, presents the key theoretical achievements, and the main experiments on strongly correlated one-dimensional quantum gases.

Funder

Agence Nationale de la Recherche

Publisher

American Vacuum Society

Subject

Electrical and Electronic Engineering,Computational Theory and Mathematics,Physical and Theoretical Chemistry,Computer Networks and Communications,Condensed Matter Physics,Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3