Voltage controlled bio-organic inverse phototransistor

Author:

Mishra Esha1,Ekanayaka Thilini K.1,Dowben Peter A.1ORCID

Affiliation:

1. Department of Physics and Astronomy, University of Nebraska–Lincoln, Jorgenson Hall, 855 North 16th Street, Lincoln, Nebraska 68588-0299, USA

Abstract

Thin films of poly-d-lysine act as polar organic and are also light sensitive. The capacitance-voltage, current-voltage, and transistor behavior were studied to gauge the photoresponse of possible poly-d-lysine thin film devices both with and without methylene blue as an additive. Transistors fabricated from poly-d-lysine act as inverse phototransistors, i.e., the on-state current is greatest in the absence of illumination. The poly-d-lysine thin film capacitance and the transistor current decrease with illumination, both with and without methylene blue as an additive. This suggests that the unbinding of photo exciton is significantly hindered in this system which is supported by the significant charge carrier lifetime for poly-d-lysine films both with and without methylene blue. For the majority carrier, the transistor geometry appears to depend on the gate voltage; in other words, the majority carrier depends on the polarization of the poly-d-lysine films, both with and without methylene blue as an additive.

Funder

National Science Foundation

Publisher

American Vacuum Society

Subject

General Physics and Astronomy,General Biochemistry, Genetics and Molecular Biology,General Materials Science,Biomaterials,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3