Novel technique to control the focal spot size using carbon nanotube based cold cathode electron beam (C-beam) architecture

Author:

Bhotkar Ketan1ORCID,Yu Yi Yin1ORCID,Sawant Jaydip1ORCID,Patil Ravindra1,Park Kyu Chang1ORCID

Affiliation:

1. Department of Information Display, Kyung Hee University, Seoul 02247, Korea

Abstract

This article discusses the development of a cold cathode electron beam (C-beam) based on vertically aligned carbon nanotubes (VACNTs) and the optimization of field emission (FE) from C-beam architecture design. The characteristics of the electron beam are typically required to match the applications of interest. To study the FE, five distinct multi-array emitter island designs, viz., 65 × 65, 75 × 75, 90 × 90, 100 × 100, and 240 × 240  μm2, were fabricated. The island 240 × 240  μm2 (single island) was divided into a group of four subislands each with dimensions 65 × 65, 75 × 75, 90 × 90, and 100 × 100  μm2. We explored the field-screening effect of these different island designs using experiments and modeling, and we discovered that the size of the island had a significant impact on the FE properties. Moreover, we found that the island’s size significantly affected its I–V properties, with a 75 × 75  μm2 island offering 0.7 mA anode current the best emission current among other islands. Additionally, tungsten cross wire (EN 12543-5), a typical resolution testing object, had its focal spot size (FSS) measured using x-ray imaging, and the lowest FSS of 0.45 and 0.49 mm in both vertical and horizontal directions was obtained. This innovative method has a great deal of promise for developing the next generation of VACNT-based electron sources.

Funder

Ministry of Trade, Industry and Energy

Publisher

American Vacuum Society

Subject

Materials Chemistry,Electrical and Electronic Engineering,Surfaces, Coatings and Films,Process Chemistry and Technology,Instrumentation,Electronic, Optical and Magnetic Materials

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3