Microstructural and kinetics analysis of FeB–Fe2B layer grown by pulsed-DC powder-pack boriding on AISI 316 L steel

Author:

Campos-Silva I.1ORCID,Cedeño-Velázquez J.1ORCID,Contla-Pacheco A. D.1ORCID,Arzate-Vázquez I.2ORCID,Castillo-Vela L. E.1ORCID,Olivares-Luna M.1ORCID,Rosales-Lopez J. L.1ORCID,Espino-Cortes F. P.3ORCID

Affiliation:

1. Grupo Ingeniería de Superficies, Instituto Politécnico Nacional, SEPI-ESIME 1 , U.P. Adolfo López Mateos, Zacatenco, Ciudad de México 07738, México

2. Centro de Nanociencias y Micro y Nanotecnologías, Instituto Politécnico Nacional 2 , U.P. Adolfo López Mateos, Zacatenco, Ciudad de México 07738, México

3. Departamento de Ingeniería Eléctrica, Instituto Politécnico Nacional, SEPI-ESIME 3 , U.P. Adolfo López Mateos, Zacatenco, Ciudad de México 07738, México

Abstract

In this study, novel findings were obtained regarding the influence of a 10 A current intensity on the growth of an FeB–Fe2B layer during pulsed-DC powder-pack boriding. Boride layer formation was carried out on AISI 316 L steel at 1123–1223 K for different exposure times at each temperature, considering 10 s polarity inversion cycles. The boride layer was characterized by x-ray diffraction and high-speed Berkovich nanoindentation, the latter being used to determine the hardness and reduced Young’s modulus mappings along the depth of the layer-substrate system. Moreover, the growth kinetics of the FeB–Fe2B layer on the steel’s surface was modeled using the heat balance integral method (HBIM). This involved transforming Fick’s second law into ordinary differential equations over time, assuming a quadratic boron concentration profile in space to determine the B diffusion coefficients in FeB and Fe2B, respectively. From the Arrhenius relationship, the B activation energies in the boride layer were estimated considering the contribution of the electromigration effect; the results showed an approximately 30% reduction compared to the values obtained in the conventional powder-pack boriding for AISI 316 L steel. Finally, the theoretical layer thickness obtained by the HBIM demonstrated an error of no more than 5% against the experimental FeB and FeB + Fe2B layer thickness values.

Funder

Instituto Politécnico Nacional

Publisher

American Vacuum Society

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3