Al2O3 atomic layer deposition on a porous matrix of carbon fibers (FiberForm) for oxidation resistance

Author:

Widmer Jack T.1ORCID,George Steven M.1ORCID

Affiliation:

1. Department of Chemistry, University of Colorado , Boulder, Colorado 80309

Abstract

Atomic layer deposition (ALD) was used to coat a porous matrix of carbon fibers known as FiberForm with Al2O3 to improve oxidation resistance. Static trimethylaluminum (TMA) and H2O exposures for Al2O3 ALD were used to obtain the uniform coating of this high porosity material. The carbon surfaces were initially functionalized for Al2O3 ALD by exposure to sequential exposures of nitrogen dioxide and TMA. A gravimetric model was developed to predict the mass gain per cycle under conditions when the ALD reactions reached saturation during each reactant exposure. The uniformity of the Al2O3 ALD coating on FiberForm was confirmed by scanning electron microscopy (SEM) and energy dispersive x-ray spectroscopy (EDS) analysis. The SEM, EDS, and gravimetric models were all consistent with a uniform Al2O3 ALD coating on the porous carbon fiber network when the ALD reactions reached saturation on the entire surface area. In contrast, the profile of the Al2O3 ALD coating on the FiberForm was also characterized using undersaturation conditions when the ALD reactions did not reach saturation throughout the FiberForm sample. Based on comparisons with results from models for ALD in porous substrates, these Al2O3 coverage profiles were consistent with diffusion-limited Al2O3 ALD. Oxidation of the FiberForm and the Al2O3 ALD-coated FiberForm was also investigated by thermogravimetric analysis (TGA). TGA revealed that a 50 nm thick Al2O3 coating deposited using 400 Al2O3 ALD cycles enhanced the oxidation resistance. The Al2O3 ALD coating increased the oxidation onset temperature by ∼200 °C from 500 to 700 °C. The oxidation of the FiberForm removed carbon and left the Al2O3 ALD coating behind as a white “skeleton” that preserved the shape of the original FiberForm sample. The Al2O3 ALD coating also decreased the oxidation rate of the FiberForm by ∼30%. The oxidation rate of the Al2O3 ALD-coated FiberForm samples was constant and independent of the thickness of the Al2O3 ALD coating. This behavior suggested that the oxidation is dependent on the competing O2 diffusion into the FiberForm and CO2 diffusion out of the FiberForm.

Funder

Ames Research Center

Publisher

American Vacuum Society

Subject

Surfaces, Coatings and Films,Surfaces and Interfaces,Condensed Matter Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3