Novel wet transfer technology of manufacturing flexible suspended two-dimensional material devices

Author:

Wang Yingtao1ORCID,Savalia Mona1ORCID,Zhang Xian1ORCID

Affiliation:

1. Stevens Institute of Technology, The Schaefer School of Engineering and Science, Department of Mechanical Engineering, Edwin A. Stevens Hall , Hoboken, New Jersey 07030

Abstract

With the rise of two-dimensional (2D) materials, their excellent optical, electronic, and thermal properties different from bulk materials make them increasingly widely studied and commercialized. 2D materials’ exceptional physical properties and unique structures make them an ideal candidate for next-generation flexible and wearable devices. In this work, we created a manufacturing method to successfully transfer monolayer, bilayer, and trilayer graphene onto the flexible substrate, with trenches of micron size to suspend graphene. Thermal transport measurements have been characterized to prove the suspended region. The achievement of manufacturing 2D materials in suspended condition will allow us to study their intrinsic physical properties at a mechanical strain, as well as contribute to novel flexible and wearable electronic devices and sensors.

Funder

National Science Foundation

Publisher

American Vacuum Society

Subject

Materials Chemistry,Electrical and Electronic Engineering,Surfaces, Coatings and Films,Process Chemistry and Technology,Instrumentation,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3