Exploring electromechanical utility of GaAs interdigitated transducers; using finite-element-method-based parametric analysis and experimental comparison

Author:

Rummel Brian D.1ORCID,Miroshnik Leonid2ORCID,Li Andrew B.3ORCID,Heilman Grant D.4ORCID,Balakrishnan Ganesh4ORCID,Sinno Talid3ORCID,Han Sang M.2ORCID

Affiliation:

1. Department of Nanoscience and Microsystems Engineering, The University of New Mexico, Albuquerque, New Mexico 87131

2. Department of Chemical & Biological Engineering, The University of New Mexico, Albuquerque, New Mexico 8713

3. Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104

4. Department of Electrical & Computer Engineering, The University of New Mexico, Albuquerque, New Mexico 8713

Abstract

Analysis of interdigitated transducers often relies on phenomenological models to approximate device electrical performance. While these approaches prove essential for signal processing applications, phenomenological models provide limited information on the device’s mechanical response and physical characteristics of the generated acoustic field. Finite element method modeling, in comparison, offers a robust platform to study the effects of the full device geometry on critical performance parameters of interdigitated transducer devices. In this study, we fabricate a surface acoustic wave resonator on semi-insulating GaAs [Formula: see text], which consists of an interdigitated transducer and acoustic mirror assembly. The device is subsequently modeled using fem software. A vector network analyzer is used to measure the experimental device scattering response, which compares well with the simulated results. The wave characteristics of the experimental device are measured by contact-mode atomic force microscopy, which validates the simulation’s mechanical response predictions. We further show that a computational parametric analysis can be used to optimize device designs for series resonance frequency, effective coupling coefficient, quality factor, and maximum acoustic surface displacement.

Funder

National Science Foundation

Publisher

American Vacuum Society

Subject

Materials Chemistry,Electrical and Electronic Engineering,Surfaces, Coatings and Films,Process Chemistry and Technology,Instrumentation,Electronic, Optical and Magnetic Materials

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3