Sequential minimum optimization algorithm with small sample size estimators

Author:

Roga Wojciech1ORCID,Ono Takafumi23ORCID,Takeoka Masahiro14ORCID

Affiliation:

1. Department of Electronics and Electrical Engineering, Keio University 1 , 3-14-1 Hiyoshi, Kohoku, Yokohama, Kanagawa 223-8522, Japan

2. Program in Advanced Materials Science Faculty of Engineering and Design, Kagawa University 2 , 2217-20 Hayashi-cho, Takamatsu, Kagawa 761-0396, Japan

3. JST, PRESTO 3 , 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan

4. Advanced ICT Research Institute, National Institute of Information and Communications Technology (NICT) 4 , 4-2-1 Nukuikita, Koganei, Tokyo 184-8795, Japan

Abstract

Sequential minimum optimization is a machine learning global search training algorithm. It is applicable when the functional dependence of the cost function on a tunable parameter given the other parameters can be cheaply determined. This assumption is satisfied by quantum circuits built of known gates. We apply it to photonic circuits where the additional challenge appears: low frequency of coincidence events lowers the speed of the algorithm. We propose to modify the algorithm such that small sample size estimators are enough to successfully run the machine learning task. We demonstrate the effectiveness of the modified algorithm applying it to a photonic classifier with data reuploading.

Funder

Precursory Research for Embryonic Science and Technology

Murata Science Foundation

Core Research for Evolutional Science and Technology

Co-creation place formation support program

The Shimazu Science Foundation

Publisher

American Vacuum Society

Subject

Electrical and Electronic Engineering,Computational Theory and Mathematics,Physical and Theoretical Chemistry,Computer Networks and Communications,Condensed Matter Physics,Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials

Reference50 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3