Linking drivers of plant per- and polyfluoroalkyl substance (PFAS) uptake to agricultural land management decisions

Author:

Scearce Alex E.1ORCID,Goossen Caleb P.2ORCID,Schattman Rachel E.1ORCID,Mallory Ellen B.13ORCID,MacRae Jean D.4ORCID

Affiliation:

1. School of Food and Agriculture, University of Maine, Orono, Maine 04469 1

2. Maine Organic Farmers and Gardeners Association, 2 Unity, Maine 04988

3. University of Maine Cooperative Extension, 3 Orono, Maine 04469

4. Department of Civil and Environmental Engineering, University of Maine, Orono, Maine 04469 4

Abstract

Widespread contamination of the per- and polyfluoroalkyl substance (PFAS) in agricultural areas is largely attributed to the application of sewage sludge in which the PFAS can be concentrated. This creates a pathway for these contaminants to enter the food chain and, by extension, causes human health and economic concerns. One barrier to managing land with PFAS contamination is the variation in reported plant uptake levels across studies. A review of the literature suggests that the variation in plant uptake is influenced by a host of factors including the composition of PFAS chemicals, soil conditions, and plant physiology. Factors include (1) the chemical components of the PFAS such as the end group and chain length; (2) drivers of soil sorption such as the presence of soil organic matter (SOM), multivalent cation concentration, pH, soil type, and micropore volume; and (3) crop physiological features such as fine root area, percentage of mature roots, and leaf blade area. The wide range of driving factors highlights a need for research to elucidate these mechanisms through additional experiments as well as collect more data to support refined models capable of predicting PFAS uptake in a range of cropping systems. A conceptual framework presented here links drivers of plant PFAS uptake found in the literature to phytomanagement approaches such as modified agriculture or phytoremediation to provide decision support to land managers.

Funder

U.S. Department of Agriculture

Publisher

American Vacuum Society

Subject

General Physics and Astronomy,General Biochemistry, Genetics and Molecular Biology,General Materials Science,Biomaterials,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3