Selective mask deposition using SiCl4 plasma for highly selective etching process

Author:

Matsui Miyako1ORCID,Miura Makoto2ORCID,Kuwahara Kenichi3ORCID

Affiliation:

1. Research & Development Group, Hitachi, Ltd. 1 , 1-280, Higashi-koigakubo, Kokubunji, Tokyo 185–8601, Japan

2. 2 Hitachi High-Tech Corporation, 1-280, Higashi-koigakubo, Kokubunji, Tokyo 185–8601, Japan

3. Hitachi High-Tech Corporation 3 , 794, Higashitoyoi, Kudamatsu, Yamaguchi 744-0002, Japan

Abstract

We developed an area-selective deposition process for forming protective layers on top of masks generated using a microwave electron-cyclotron-resonance etching system. A deposition layer is formed only on SiO2 masks without forming an unnecessary deposition layer on the Si surfaces in the etching area, such as the bottoms of the patterns and isolated etching area. The protection layers were selectively formed on a SiO2 mask without forming on a Si etching area by using a SiCl4/H2/Cl2 plasma. The pretreatment to clean the Si and SiO2 surfaces before deposition was important for achieving selective deposition because selectivity appeared by nucleation delay on the cleaned Si surface. On the Si surface, adsorbed SiClx easily desorbed again by reacting with the Cl generated from the plasma. However, adsorbed SiClx on SiO2 was more difficult to desorb by reacting with Cl due to Si–O having a larger binding energy than Si–Si. After the deposition layer was selectively formed on the SiO2 mask, the layer was oxidized by using O2 plasma treatment to improve the etching resistance during the subsequent Si etching. We also investigated a Si etching process using selective deposition during the etching of a 25 nm-pitch line-and-space Si pattern with a SiO2 mask. Extremely highly selective etching was achieved using selective deposition without forming an unnecessary deposition on an isolated Si area.

Funder

Hitachi High-Tech Corporation

Publisher

American Vacuum Society

Subject

Surfaces, Coatings and Films,Surfaces and Interfaces,Condensed Matter Physics

Reference20 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3