Practical guide on chemometrics/informatics in x-ray photoelectron spectroscopy (XPS). II. Example applications of multiple methods to the degradation of cellulose and tartaric acid

Author:

Avval Tahereh G.1ORCID,Haack Hyrum1,Gallagher Neal2ORCID,Morgan David34ORCID,Bargiela Pascal5,Fairley Neal6,Fernandez Vincent7,Linford Matthew R.1ORCID

Affiliation:

1. Department of Chemistry and Biochemistry, Brigham Young University, C100 BNSN, Provo, Utah 84602

2. Eigenvector Research, Inc., Manson, Washington, DC 98831

3. Max Planck-Cardiff Centre on the Fundamentals of Heterogeneous Catalysis FUNCAT, Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff CF10 3AT, United Kingdom

4. HarwellXPS—EPSRC National Facility for Photoelectron Spectroscopy, RCaH, Didcot, Oxon OX11 0FA, United Kingdom

5. The Institute for Research on Catalysis and the Environment of Lyon (IRCELYON), 2 Avenue Albert Einstein, 69626 Villeurbanne, France

6. Casa Software Ltd., Bay House, Teignmouth TQ14 8NE, United Kingdom

7. Nantes Université, CNRS, Institut des Matériaux de Nantes Jean Rouxel, IMN, F-44000 Nantes, France

Abstract

Chemometrics/informatics, and data analysis in general, are increasingly important in x-ray photoelectron spectroscopy (XPS) because of the large amount of information (spectra/data) that is often collected in degradation, depth profiling, operando, and imaging studies. In this guide, we present chemometrics/informatics analyses of XPS data using a summary statistic (pattern recognition entropy), principal component analysis, multivariate curve resolution (MCR), and cluster analysis. These analyses were performed on C 1s, O 1s, and concatenated (combined) C 1s and O 1s narrow scans obtained by repeatedly analyzing samples of cellulose and tartaric acid, which led to their degradation. We discuss the following steps, principles, and methods in these analyses: gathering/using all of the information about samples, performing an initial evaluation of the raw data, including plotting it, knowing which chemometrics/informatics analyses to choose, data preprocessing, knowing where to start the chemometrics/informatics analysis, including the initial identification of outliers and unexpected features in data sets, returning to the original data after an informatics analysis to confirm findings, determining the number of abstract factors to keep in a model, MCR, including peak fitting MCR factors, more complicated MCR factors, and the presence of intermediates revealed through MCR, and cluster analysis. Some of the findings of this work are as follows. The various chemometrics/informatics methods showed a break/abrupt change in the cellulose data set (and in some cases an outlier). For the first time, MCR components were peak fit. Peak fitting of MCR components revealed the presence of intermediates in the decomposition of tartaric acid. Cluster analysis grouped the data in the order in which they were collected, leading to a series of average spectra that represent the changes in the spectra. This paper is a companion to a guide that focuses on the more theoretical aspects of the themes touched on here.

Publisher

American Vacuum Society

Subject

Surfaces, Coatings and Films,Surfaces and Interfaces,Condensed Matter Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3