Affiliation:
1. Eindhoven University of Technology, P. O. Box 513, 5600 MB Eindhoven, The Netherlands
2. INO-CNR BEC Center and Dipartimento di Fisica, Università di Trento, 38123 Povo, Italy
Abstract
This work studies the variational quantum eigensolver (VQE) algorithm, which is designed to determine the ground state of a quantum mechanical system by combining classical and quantum hardware. Two methods of reducing the number of required qubit manipulations, prone to induce errors, for the variational quantum eigensolver are studied. First, we formally justify the multiple [Formula: see text] symmetry qubit reduction scheme first sketched by Bravyi et al. [arXiv:1701.08213 (2017)]. Second, we show that even in small, but non-trivial systems such as H2, LiH, and H2O, the choice of entangling methods (gate based or native) gives rise to varying rates of convergence to the ground state of the system. Through both the removal of qubits and the choice of entangler, the demands on the quantum hardware can be reduced. We find that in general, analyzing the VQE problem is complex, where the number of qubits, the method of entangling, and the depth of the search space all interact. In specific cases however, concrete results can be shown, and an entangling method can be recommended over others as it outperforms in terms of difference from the ground state energy.
Funder
Nederlandse Organisatie voor Wetenschappelijk Onderzoek
Ministerie van Economische Zaken en Klimaat
Subject
Electrical and Electronic Engineering,Computational Theory and Mathematics,Physical and Theoretical Chemistry,Computer Networks and Communications,Condensed Matter Physics,Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献