Mass spectral imaging showing the plant growth-promoting rhizobacteria's effect on the Brachypodium awn

Author:

Zhang Yuchen1ORCID,Komorek Rachel2ORCID,Zhu Zihua3ORCID,Huang Qiaoyun14ORCID,Chen Wenli1ORCID,Jansson Janet5ORCID,Jansson Christer3ORCID,Yu Xiao-Ying6ORCID

Affiliation:

1. State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China

2. Energy and Environment Directorate, Pacific Northwest National Laboratory, Richland, Washington 99354

3. Environmental Molecular Science Laboratory, Pacific Northwest National Laboratory, Richland, Washington 99354

4. College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China

5. Earth and Biological Science Directorate, Pacific Northwest National Laboratory, Richland, Washington 99354

6. Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830

Abstract

The plant growth-promoting rhizobacteria (PGPR) on the host plant surface play a key role in biological control and pathogenic response in plant functions and growth. However, it is difficult to elucidate the PGPR effect on plants. Such information is important in biomass production and conversion. Brachypodium distachyon (Brachypodium), a genomics model for bioenergy and native grasses, was selected as a C3 plant model; and the Gram-negative Pseudomonas fluorescens SBW25 ( P.) and Gram-positive Arthrobacter chlorophenolicus A6 ( A.) were chosen as representative PGPR strains. The PGPRs were introduced to the Brachypodium seed's awn prior to germination, and their possible effects on the seeding and growth were studied using different modes of time-of-flight secondary ion mass spectrometry (ToF-SIMS) measurements, including a high mass-resolution spectral collection and delayed image extraction. We observed key plant metabolic products and biomarkers, such as flavonoids, phenolic compounds, fatty acids, and auxin indole-3-acetic acid in the Brachypodium awns. Furthermore, principal component analysis and two-dimensional imaging analysis reveal that the Brachypodium awns are sensitive to the PGPR, leading to chemical composition and morphology changes on the awn surface. Our results show that ToF-SIMS can be an effective tool to probe cell-to-cell interactions at the biointerface. This work provides a new approach to studying the PGPR effects on awn and shows its potential for the research of plant growth in the future.

Funder

Oak Ridge National Laboratory

Pacific Northwest National Laboratory

U.S. Department of Energy

Publisher

American Vacuum Society

Subject

General Physics and Astronomy,General Biochemistry, Genetics and Molecular Biology,General Materials Science,Biomaterials,General Chemistry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3