Magnetron sputtered NiAl/TiBx multilayer thin films

Author:

Wojcik Tomasz1,Ott Vincent2,Özbilen Sedat3,Leiste Harald2,Ulrich Sven2,Mayrhofer Paul Heinz1ORCID,Riedl Helmut1ORCID,Stueber Michael2

Affiliation:

1. Institute of Materials Science and Technology, TU Wien, Getreidemarkt 9, 1060 Wien, Austria

2. Karlsruhe Institute of Technology (KIT), Institute for Applied Materials (IAM-AWP), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany

3. Department of Mechanical, Manufacturing and Biomedical Engineering, Trinity College Dublin, University of Dublin, Dublin 2, D02 PN40, Ireland

Abstract

Transition metal diboride-based thin films are currently receiving strong interest in fundamental and applied research. Multilayer thin films based on transition metal diborides are, however, not yet explored in detail. This study presents results on the constitution and microstructure of multilayer thin films composed of TiBx and the intermetallic compound NiAl. Single layer NiAl and TiBx and NiAl/TiBx multilayer thin films with a variation of the individual layer thickness and bilayer period were deposited by D.C. and R.F. magnetron sputtering on silicon substrates. The impact of the operation mode of the sputtering targets on the microstructure of the thin films was investigated by detailed compositional and structural characterization. The NiAl single layer thin films showed an operation mode-dependent growth in a polycrystalline B2 CsCl structure with a cubic lattice with and without preferred orientation. The TiBx single layer thin films exhibited an operation mode independent crystalline structure with a hexagonal lattice and a pronounced (001) texture. These TiBx layers were significantly Ti-deficient and showed B-excess, resulting in stoichiometry in the range TiB2.64–TiB2.72. Both thin film materials were deposited in a regime corresponding with zone 1 or zone T in the structure zone model of Thornton. Transmission electron microscopy studies revealed, however, very homogeneous, dense thin-film microstructures, as well as the existence of dislocation lines in both materials. In the multilayer stacks with various microscale and nanoscale designs, the TiBx layers grew in a similar microstructure with (001) texture, while the NiAl layers were polycrystalline without preferred orientation in microscale design and tended to grow polycrystalline with (211) preferred orientation in nanoscale designs. The dislocation densities at the NiAl/TiBx phase boundaries changed with the multilayer design, suggesting more smooth interfaces for multilayers with microscale design and more disturbed, strained interfaces in multilayers with nanoscale design. In conclusion, the volume fraction of the two-layer materials, their grain size and crystalline structure, and the nature of the interfaces have an impact on the dislocation density and ability to form dislocations in these NiAl/TiBx-based multilayer structures.

Publisher

American Vacuum Society

Subject

Surfaces, Coatings and Films,Surfaces and Interfaces,Condensed Matter Physics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3