Influence of nitrogen vacancies on the decomposition route and age hardening of wurtzite Ti1−xAlxNy thin films

Author:

Salamania J.12ORCID,Farhadizadeh A. F.1ORCID,Kwick K. M. Calamba3,Schramm I. C.3ORCID,Hsu T. W.13ORCID,Johnson L. J. S.13ORCID,Rogström L.1ORCID,Odén M.1ORCID

Affiliation:

1. Nanostructured Materials Division, Department of Physics, Chemistry and Biology (IFM), Linköping University 1 , Linköping 581 83, Sweden

2. Seco Tools AB 2 , Fagersta 737 82, Sweden

3. Sandvik Coromant AB 3 , Stockholm 126 80, Sweden

Abstract

The wurtzite phase of TiAlN has been known to form in industrial grade coatings with high Al content; yet, a significant knowledge gap exists regarding its behavior at high temperatures and the impact of defects on its properties. Specifically, its response to high temperatures and the implications of defects on its characteristics are poorly understood. Here, the high-temperature decomposition of nitrogen-deficient epitaxial wurtzite Ti1−xAlxNy (x = 0.79–0.98, y = 0.82–0.86) films prepared by reactive magnetron sputtering was investigated using x-ray diffractometry and high-resolution scanning transmission electron microscopy. The results show that wurtzite Ti1−xAlxNy decomposes by forming intermediary MAX phases, which then segregate into pure c-TiN and w-AlN phases after high-temperature annealing and intermetallic TiAl nanoprecipitates. The semicoherent interfaces between the wurtzite phase and the precipitates cause age hardening of approximately 4−6 GPa, which remains even after annealing at 1200 °C. These findings provide insight into how nitrogen vacancies can influence the decomposition and mechanical properties of wurtzite TiAlN.

Funder

VINNOVA

Vetenskapsrådet

Stiftelsen för Strategisk Forskning

Publisher

American Vacuum Society

Subject

Surfaces, Coatings and Films,Surfaces and Interfaces,Condensed Matter Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3