Persistent iodine contamination resulting from thermal evaporation of inorganic perovskites

Author:

Burlingame Quinn C.1ORCID,Kaplan Alan B.2ORCID,Liu Tianran2ORCID,Loo Yueh-Lin3ORCID

Affiliation:

1. Andlinger Center for Energy and the Environment, Princeton University, Princeton, New Jersey 08544

2. Department of Electrical and Computer Engineering, Princeton University, Princeton, New Jersey 08544

3. Department of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey 08544

Abstract

Thermal evaporation is a promising technique for the fabrication of uniform perovskite films over large areas that forgo the use of hazardous solvents. However, evaporation equipment, particularly at the laboratory scale, is often shared between different materials systems and it is, thus, important to understand the potential impact that halide perovskite evaporation can have on other films and devices processed in the same chamber. Here, we observe that evaporation of perovskite precursors such as PbI2 and CsI results in significant iodine contamination that is not efficiently removed by conventional decontamination procedures such as solvent cleaning, chamber bakeout, and foil replacement. X-ray photoelectron spectra show that this iodine contamination can incorporate itself into organic and metal films grown in the same chamber, which degrades the performance of thermally evaporated organic photovoltaic cells by ∼90%. To remove the contamination and restore the performance of other optoelectronic devices grown in the same chamber, a total resurfacing/replacement of all interior evaporator surfaces was required.

Funder

National Science Foundation

Arnold and Mabel Beckman Foundation

Publisher

American Vacuum Society

Subject

Materials Chemistry,Electrical and Electronic Engineering,Surfaces, Coatings and Films,Process Chemistry and Technology,Instrumentation,Electronic, Optical and Magnetic Materials

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3