Effect of high-temperature postannealing atmosphere on the properties of BaSi2 films

Author:

Iwai Ai1,Aonuki Sho1ORCID,Narita Shunsuke1,Takayanagi Kaori1,Toko Kaoru2ORCID,Suemasu Takashi2ORCID

Affiliation:

1. Graduate School of Science and Technology, University of Tsukuba 1 , Tsukuba, Ibaraki 305-8573, Japan

2. Department of Applied Physics, Institute of Pure and Applied Sciences, University of Tsukuba 2 , Tsukuba, Ibaraki 305-8573, Japan

Abstract

We evaluated the effect of O atoms on the postannealed BaSi2 films grown by molecular beam epitaxy. Postannealing (PA) in an Ar atmosphere at a pressure of 1.9 × 105 Pa increased the O concentration to 7 × 1020 cm−3 in the bulk region and further increased to ∼1022 cm−3 at the BaSi2/Si interface. Cracks formed during the PA process, allowing O to enter more easily to the BaSi2 films. In the x-ray photoelectron spectroscopy spectrum of the Si 2s core level measured at 10 nm from the surface, a shift of the peak related to SiOx was detected, indicating a change in the bonding state of Si and O in this region. When PA was performed in vacuum at 10−3 Pa, the photoresponsivity in the short wavelength region was enhanced, with a maximum value of 6.6 A W−1 at 790 nm. The O concentration in the film decreased in the sample annealed in vacuum, and the PL peak intensity at 0.85 eV decreased, suggesting that this was due to a decrease in O-related defects compared to the Ar atmosphere. However, agglomeration of BaSi2 caused significant surface roughness, indicating the importance of PA conditions that minimize O uptake and keep the surface smooth for improved performance of BaSi2 solar cells.

Funder

Japan Society for the Promotion of Science

Publisher

American Vacuum Society

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3