Molecular beam epitaxy synthesis of In2Se3 films

Author:

Voigt Cooper A.1ORCID,Reingold Matthew1ORCID,Dube Alex1,Early Lawrence S.2,Wagner Brent K.2ORCID,Vogel Eric M.1ORCID

Affiliation:

1. School of Materials Science and Engineering, Georgia Institute of Technology 1 , Atlanta, Georgia 30332

2. Georgia Tech Research Institute 2 , Atlanta, Georgia 30332

Abstract

The effects of substrate choice, substrate temperature, Se/In flux ratio, and cooling rate after deposition on the phase composition, surface morphology, and stoichiometry of indium selenide films synthesized via molecular beam epitaxy are presented. In2Se3 films were synthesized on sapphire, Si(111) and highly oriented, pyrolytic graphite (HOPG) substrates. The phase composition, stoichiometry, and surface morphology of the films were characterized via Raman spectroscopy, x-ray photoelectron spectroscopy, and atomic force microscopy, respectively. Higher substrate temperature combined with higher Se/In ratio promoted formation of β-In2Se3 over γ and/or κ-In2Se3 on all substrates. Higher Se/In ratio also independently promoted β-In2Se3 over γ and/or κ-In2Se3 on all substrates at 673 K. The lateral dimensions of In2Se3 flakes increased as the substrate temperature increased on all substrates, and the largest lateral dimensions were observed for β-In2Se3 flakes on HOPG at 973 K. No evidence of α-In2Se3 was observed in the Raman spectra of any of the films at any of the synthesis conditions in this study. β-In2Se3 films on HOPG were cooled at 1200, 120, and 12 K/h and no evidence of a β to α-In2Se3 phase transition was observed. Some evidence of β to α-In2Se3 phase transition was observed in temperature-dependent XRD of In2Se3 powders, suggesting that another parameter besides cooling rate is locking the In2Se3 films into the β-phase.

Publisher

American Vacuum Society

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3