Single-photon splitting by polymeric submicropillars structures

Author:

Ngo Gia Long12ORCID,Hermier Jean-Pierre2ORCID,Lai Ngoc Diep1ORCID

Affiliation:

1. Université Paris-Saclay, CNRS, ENS Paris-Saclay, CentraleSupélec 1 , LuMIn, Gif-sur-Yvette, France

2. Université Paris-Saclay, UVSQ, CNRS 2 , GEMaC, 78000 Versailles, France

Abstract

Optical splitters are one of the most important interconnects in the optical chips of future optical quantum computers. Here, we introduce novel quantum photonic splitters based on polymeric submicropillars that split the single-photon signal generated by a colloidal quantum dot (QD) into multiple outputs, which can be easily accessed through a conventional confocal scanning optical system. Using a single continuous-wave laser with a low absorption wavelength for both polymer material and QDs, we were able to first deterministically place a single-photon emitter (SPE) within one of the submicropillars and then characterize the single-photon guiding effect of the fabricated structures. The submicropillars, with their size and position which are comprehensively optimized by numerical simulations, act as single-mode directional coupler guiding both the laser excitation and the single-photon emission thanks to the evanescent wave coupling effect. With one-step fabrication, we can create a well-distributed array of “imaginary” SPEs from an original SPE. Our method opens various applications in integrated devices based on solid-state quantum emitters.

Publisher

American Vacuum Society

Subject

Electrical and Electronic Engineering,Computational Theory and Mathematics,Physical and Theoretical Chemistry,Computer Networks and Communications,Condensed Matter Physics,Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3