Symmetry and control in thermodynamics

Author:

Adlam E.12ORCID,Uribarri L.3,Allen N.4

Affiliation:

1. Basic Research Community for Physics, Leipzig, Germany

2. Western University, London, Ontario, Canada, N6A 3K7

3. Etxea LLC, Arlington, Texas 76010, USA

4. University of Maryland, College Park, Maryland 20742, USA and University of Queensland, Brisbane, Australia

Abstract

We explore the relationship between symmetry and entropy, distinguishing between symmetries of state and dynamical symmetries, and in the context of quantum thermodynamics between symmetries of pure and mixed states. Ultimately, we will argue that symmetry in thermodynamics is best understood as a means of control within the control theory paradigm, and we will describe an interesting technological application of symmetry-based control in the context of a quantum coherence capacitor. Symmetry, the concept from which Noether derived the conservation laws of physics, is one of the most important guiding principles of modern physics. Moreover, symmetry is often regarded as a form of order, and entropy is sometimes regarded as a measure of disorder, so it is natural to suppose that symmetry and entropy are related in some way. In this article, we will explore the relationship between symmetry and entropy, demonstrating that this relationship is by no means a simple one: in particular, it is important to distinguish between symmetries of state and dynamical symmetries, and in the context of quantum thermodynamics to distinguish between symmetries of pure and mixed states. Ultimately, we will argue that symmetry in thermodynamics is best understood as a means of control within the control theory paradigm, and we will describe an interesting technological application of symmetry-based control in the context of a quantum coherence capacitor.

Publisher

American Vacuum Society

Subject

Electrical and Electronic Engineering,Computational Theory and Mathematics,Physical and Theoretical Chemistry,Computer Networks and Communications,Condensed Matter Physics,Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Quantum thermodynamics;AVS Quantum Science;2023-08-11

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3